

Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6683/01)

January 2008 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$r = \frac{10 \times 56076 - 773 \times 724}{\sqrt{(10 \times 60475 - 773^2)(10 \times 53122 - 724^2)}}$ o.e.	B1, B1 M1 A1ft
(b)	r = 0.155357 Both weak correlation Neither score is a good indication of future performance Interview test is slightly better since correlation is positive	A1 (5) B1g B1h (2) Total 7 marks
NB	$S_{xx} = 60475 - \frac{(773)^2}{10} = 722.1, S_{yy} = 53122 - \frac{(724)^2}{10} = 704.4, S_{xy} = 56076 - \frac{773 \times 724}{10} = 110.8$	
(a)	1^{st} B1 for $\sum x$ and 2^{nd} B1 for $\sum y$, should be seen or implied.	
	M1 for at least one correct attempt at one of S_{xx} , S_{yy} or S_{xy} and then using in the correct formula	
(b)	1^{st} A1ft for a fully correct expression. (ft their Σx and their Σy) or 3 correct expressions for S_{xx} , S_{xy} , and S_{yy} but possibly incorrect values for these placed correctly in r . 2^{nd} A1 for awrt 0.155	
	If $ r > 0.5$ they can score B1g in (b) for saying that it (skills test) is not a good guide to performance but B0h since a second acceptable comment about both tests is not possible.	
	Give B1 for one correct line, B1B1 for any 2. If the only comment is the test(s) <u>are</u> a good guide: scores B0B0 If the only comment is the tests are not good: scores B1B0 (second line)	
	The third line is for a comment that suggests that the interview test is OK but the skills test is not since one is positive and the other is negative.	
	Treat 1 st B1 as B1g and 2 nd as B1h	
	An answer of "no" alone scores B0B0	

Question Number	Scheme	Marks
2.		
(a)	12	M1, A1
	sd is $\sqrt{\frac{724961}{12} - (229.75)^2}$, = 87.34045 AWRT 87.3	M1, A1
	[Accept $s = AWRT 91.2$]	
(b)	Ordered list is: 125, 160, 169, 171, 175, 186, 210, 243, 250, 258, 390, 420 $Q_2 = \frac{1}{2}(186 + 210) = 198$	(4) B1
	/	B1
		B1
(c)		(3) M1, A1 B1ft B1ft
(d)	$\frac{Q_1 - 2Q_2 + Q_3}{Q_3 - Q_1} = \frac{170 - 2 \times 198 + 254}{254 - 170}, = 0.3$ AWRT 0.33	(4) M1, A1
	Positive skew.	A1ft (2)
		(3) Total 14 marks
(a)	1 st M1 for using $\frac{\sum x}{n}$ with a credible numerator and $n = 12$.	
NB	for using a correct formula, root required but can ft their mean Use of $s = \sqrt{8321.84} = 91.22$ is OK for M1A1 here. Answers only from a calculator in (a) can score full marks	
(b)	1 st B1 for median= 198 only, 2 nd B1 for lower quartile 3 rd B1 for upper quartile	
S.C.	If all Q_1 and Q_3 are incorrect but an ordered list (with ≥ 6 correctly placed) is seen and used then award B0B1 as a special case for these last two marks.	
(c)	for a clear attempt using their quartiles in given formula, for any value in the range 370 - 392 1 st B1ft for any one correct decision about <i>B</i> or <i>F</i> - ft their limit in range (258, 420) 2 nd B1ft for correct decision about both <i>F</i> and <i>B</i> - ft their limit in range (258, 420) If more points are given score B0 here for the second B mark. (Can score M0A0B1B1 here)	
(d)	M1 for an attempt to use their figures in the correct formula – must be seen (≥ 2 correct substitutions) 1st A1 for AWRT 0.33 2nd A1ft for positive skew. Follow through their value/sign of skewness. Ignore any further calculations. "positive correlation" scores A0	

3.	Width Freq. Density	1 6	1 7	4 2	2 6	3 5.5	5 2	3 1.5	12 0.5		M1	
	Total area is (1×0			×2)+	.,= 70		0.	.5 ×12	or 6		A1	
	$(90.5 - 78.5) \times \frac{1}{2} \times \frac{1}{2}$ Number of runns	ere''	M1 B1 A1									
	Number of runners is 12											
	1st M1 for attempt at width of the correct bar (90.5 - 78.5) [Maybe on histogram or in table] 1st A1 for 0.5×12 or 6 (may be seen on the histogram. Must be related to the are of the bar above 78.5 - 90.5. 2nd M1 for attempting area of correct bar× 140/(their 70) B1 for 70 seen anywhere in their working 2nd A1 for correct answer of 12. Minimum working required is 2×0.5×12 where the 2 should come from 140/70 Beware 90.5 - 78.5 = 12 (this scores M1A0M0B0A0) Common answer is 0.5×12 = 6 (this scores M1A1M0B0A0) If unsure send to review e.g. 2 × 0.5 × 12=12 without 70 being seen											

4.						
(a)	$S_{xy} =$	$=1818.5 - \frac{41 \times 406}{10}, =153.9$	(could be seen in (b))	AWRT 154	M1, A1	
		$=188 - \frac{41^2}{10} = 19.9$	(could be seen in (b))		A1	
(b)		$\frac{153.9}{19.9}$, = 7.733668 $40.6-b\times4.1$ (= 8.89796)		AWRT 7.73	M1, A1 M1	(3)
		8.89 + 7.73x			A1	(4)
(c)	A tyj	pical car will travel 7700 mile	s every year		B1ft	(4)
(d)		$5, y = 8.89 + 7.73 \times 5 (= 47.5 - 4)$ nileage predicted is	7.6) AWRT 48000		M1 A1	(1)
					Total 10 n	(2) narks
		Accept calculation	as for S_{xx} and S_{xy} in (a) or (b))		
(a)	M1 1 st A1 2 nd A1	for correct attempt or expre for one correct for both correct	ession for either			
(b)	Ignore	the epen marks for part (b)	they should be awarded as	per this scheme		
	1 st M1	for $\frac{\text{their } S_{xy}}{\text{their } S_{xx}}$				
	1 st A1 2 nd M1	for AWRT 7.73 for attempt at correct forms	ula for <i>a</i> (minus required). Ft but making one slip in sub.eg	_		
	2 nd A1	for correct equation with 2				
	Correct	answers only (from calc) sco	ore 4/4 if correct to 2dp or 3	3/4 if AWRT 2dp		
(c)	B1ft	for their $b \times 1000$ to at least	2 sf. Accept "7.7 thousand"	but value is neede	d	
(d)	M1	for substituting $x = 5$ into the	heir final answer to (b).			
	A1	for AWRT 48000 (Accept	"48 thousands")			
					l	

6. (a)	200 0	or 200g	B1	(1)
(b)		X < 210) = 0.6 or $P(X < 210)$ = 0.8 or $P(X > 210)$ = 0.2 or diagram (o.e.) Correct use of 0.8 or 0.2	M1 A1	(1)
	Z = 0	$(\pm)\frac{210-200}{\sigma}$	M1	
		$\frac{10}{\sigma} = 0.8416$ 0.8416	B1	
		$\sigma = 11.882129$ AWRT 11.9	A1	
(c)	P(X	$T < 180) \qquad = P\left(Z < \frac{180 - 200}{\sigma}\right)$	M1	(5)
		= P(Z < -1.6832) $= 1 - 0.9535$ $= 0.0465 or AWRT 0.046$	M1 A1	(2)
			Total 9	(3) marks
(a)		"mean = 200g" is B0 but "median = 200" or just "200" alone is B1		
	Stan	dardization in (b) and (c). They must use σ not σ^2 or $\sqrt{\sigma}$.		
(b)	1 st M1	for a correct probability statement (as given or eg P(200 <x<210)=0.3 o.e.)<="" td=""><td></td><td></td></x<210)=0.3>		
	1 st A1	or shaded diagram - must have values on z-axis and probability areas shown for correct use of 0.8 or $p = 0.2$. Need a correct probability statement. May be implied by a suitable value for z seen (e.g. $z = 0.84$)	Ĺ	
	2 nd M1	for attempting to standardise. Values for x and μ used in formula.		
	B1 2 nd A1	Don't need $z =$ for this M1 nor a z-value, just mark standardization. for $z = 0.8416$ (or better) [$z = 0.84$ usually just loses this mark in (a)] for AWRT 11.9		
(c)	1 st M1	for attempting to Standardise with 200 and their sd(>0) e.g. $(\pm)\frac{180-200}{\text{their }\sigma}$		
	2 nd M1	NB on epen this is an A mark ignore and treat it as 2 nd M1 for 1 – a probability from tables provided compatible with their		
	A1	probability statement. for 0.0465 or AWRT 0.046 (Dependent on both Ms in part (c))		

7.(a)	P(R	$=3\cap B=0)=\frac{1}{4}\times$	$\frac{1}{4}, = \frac{1}{16}$					M1, A	1		
<i>a</i> >		4 4 10									
(b)		3	0	3	6	9					
		2	0	2	4	6					
		1	0	1	2	3	All 0s All 1,2,3s All 4,6,9s	B1 B1 B1			
		0	0	0	0	0			(3)		
		B R	0	1	2	3					
(c)	$a=\frac{1}{1}$	$\frac{7}{6}$, $b = c = d = \frac{1}{16}$						B1, B	1 B1		
(d)	E(T)	$= \left(1 \times \frac{1}{16}\right) + \left(2\right)$	$\times \frac{1}{8} + 3$	$\times \frac{1}{8} + \left(4\right)$	$4 \times \frac{1}{16} + .$			M1	(3)		
		$= 2\frac{1}{4} \text{ or exact equivalent e.g. 2.25, } \frac{9}{4}$									
(e)	Var($T) = \left(1^2 \times \frac{1}{16}\right) + \left(2^2 \times \frac{1}{16}\right) + \left($	0)		(10	/	$\left(\frac{9}{4}\right)^2$	(2) M1A1,M1			
		$=\frac{49}{4} - \frac{81}{16} = 7\frac{3}{1}$	$\frac{3}{6}$ or $\frac{11}{16}$	$\frac{5}{6}$ (o.e	e.)		AWRT 7.19	A1 Total 1	(4) 14 marks		
(a)	M1	for $\frac{1}{4} \times \frac{1}{4}$									
(c)	1 st B1 2 nd B1	for $\frac{7}{16}$,	or in <i>b, c,</i> (d(b=c=	$=d\neq \frac{1}{16}$ c	or $b = c =$	$\frac{1}{16} \neq d$ etc), 3 rd B1 all of	b, c, d	$=\frac{1}{16}$		
(d)	M1	for attempting \sum	$\int t\mathbf{P}(T=t)$	t), 3 or m	ore terms	correct or	correct ft. Must Attemp				
(e)	1 st M1						er than 1 scores M0. t ft.				
	1 st A1	40									
	2 nd M1	T									
	2 nd A1	10									